Metamath Proof Explorer


Theorem opabbii

Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995)

Ref Expression
Hypothesis opabbii.1 φ ψ
Assertion opabbii x y | φ = x y | ψ

Proof

Step Hyp Ref Expression
1 opabbii.1 φ ψ
2 eqid z = z
3 1 a1i z = z φ ψ
4 3 opabbidv z = z x y | φ = x y | ψ
5 2 4 ax-mp x y | φ = x y | ψ