Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opabbii.1 | |- ( ph <-> ps ) |
|
| Assertion | opabbii | |- { <. x , y >. | ph } = { <. x , y >. | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabbii.1 | |- ( ph <-> ps ) |
|
| 2 | eqid | |- z = z |
|
| 3 | 1 | a1i | |- ( z = z -> ( ph <-> ps ) ) |
| 4 | 3 | opabbidv | |- ( z = z -> { <. x , y >. | ph } = { <. x , y >. | ps } ) |
| 5 | 2 4 | ax-mp | |- { <. x , y >. | ph } = { <. x , y >. | ps } |