Metamath Proof Explorer


Theorem opabbii

Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995)

Ref Expression
Hypothesis opabbii.1
|- ( ph <-> ps )
Assertion opabbii
|- { <. x , y >. | ph } = { <. x , y >. | ps }

Proof

Step Hyp Ref Expression
1 opabbii.1
 |-  ( ph <-> ps )
2 eqid
 |-  z = z
3 1 a1i
 |-  ( z = z -> ( ph <-> ps ) )
4 3 opabbidv
 |-  ( z = z -> { <. x , y >. | ph } = { <. x , y >. | ps } )
5 2 4 ax-mp
 |-  { <. x , y >. | ph } = { <. x , y >. | ps }