Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opabbii.1 | |- ( ph <-> ps ) |
|
Assertion | opabbii | |- { <. x , y >. | ph } = { <. x , y >. | ps } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabbii.1 | |- ( ph <-> ps ) |
|
2 | eqid | |- z = z |
|
3 | 1 | a1i | |- ( z = z -> ( ph <-> ps ) ) |
4 | 3 | opabbidv | |- ( z = z -> { <. x , y >. | ph } = { <. x , y >. | ps } ) |
5 | 2 4 | ax-mp | |- { <. x , y >. | ph } = { <. x , y >. | ps } |