Metamath Proof Explorer


Theorem opabbii

Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995)

Ref Expression
Hypothesis opabbii.1 ( 𝜑𝜓 )
Assertion opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 }

Proof

Step Hyp Ref Expression
1 opabbii.1 ( 𝜑𝜓 )
2 eqid 𝑧 = 𝑧
3 1 a1i ( 𝑧 = 𝑧 → ( 𝜑𝜓 ) )
4 3 opabbidv ( 𝑧 = 𝑧 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } )
5 2 4 ax-mp { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 }