Metamath Proof Explorer
Description: A chained equality inference, useful for converting to definitions.
(Contributed by NM, 21-Jun-1993)
|
|
Ref |
Expression |
|
Hypotheses |
3eqtr4g.1 |
|
|
|
3eqtr4g.2 |
|
|
|
3eqtr4g.3 |
|
|
Assertion |
3eqtr4g |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3eqtr4g.1 |
|
2 |
|
3eqtr4g.2 |
|
3 |
|
3eqtr4g.3 |
|
4 |
2 1
|
syl5eq |
|
5 |
4 3
|
eqtr4di |
|