Metamath Proof Explorer


Theorem 3eqtr4g

Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses 3eqtr4g.1 φA=B
3eqtr4g.2 C=A
3eqtr4g.3 D=B
Assertion 3eqtr4g φC=D

Proof

Step Hyp Ref Expression
1 3eqtr4g.1 φA=B
2 3eqtr4g.2 C=A
3 3eqtr4g.3 D=B
4 2 1 eqtrid φC=B
5 4 3 eqtr4di φC=D