Metamath Proof Explorer
Description: A chained equality inference, useful for converting to definitions.
(Contributed by NM, 21-Jun-1993)
|
|
Ref |
Expression |
|
Hypotheses |
3eqtr4g.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
|
3eqtr4g.2 |
⊢ 𝐶 = 𝐴 |
|
|
3eqtr4g.3 |
⊢ 𝐷 = 𝐵 |
|
Assertion |
3eqtr4g |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3eqtr4g.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
3eqtr4g.2 |
⊢ 𝐶 = 𝐴 |
3 |
|
3eqtr4g.3 |
⊢ 𝐷 = 𝐵 |
4 |
2 1
|
eqtrid |
⊢ ( 𝜑 → 𝐶 = 𝐵 ) |
5 |
4 3
|
eqtr4di |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |