Metamath Proof Explorer


Theorem f1eq3

Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1eq3 A = B F : C 1-1 A F : C 1-1 B

Proof

Step Hyp Ref Expression
1 feq3 A = B F : C A F : C B
2 1 anbi1d A = B F : C A Fun F -1 F : C B Fun F -1
3 df-f1 F : C 1-1 A F : C A Fun F -1
4 df-f1 F : C 1-1 B F : C B Fun F -1
5 2 3 4 3bitr4g A = B F : C 1-1 A F : C 1-1 B