Metamath Proof Explorer


Theorem nff1

Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004)

Ref Expression
Hypotheses nff1.1 _ x F
nff1.2 _ x A
nff1.3 _ x B
Assertion nff1 x F : A 1-1 B

Proof

Step Hyp Ref Expression
1 nff1.1 _ x F
2 nff1.2 _ x A
3 nff1.3 _ x B
4 df-f1 F : A 1-1 B F : A B Fun F -1
5 1 2 3 nff x F : A B
6 1 nfcnv _ x F -1
7 6 nffun x Fun F -1
8 5 7 nfan x F : A B Fun F -1
9 4 8 nfxfr x F : A 1-1 B