Metamath Proof Explorer


Theorem dff12

Description: Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996)

Ref Expression
Assertion dff12 F:A1-1BF:ABy*xxFy

Proof

Step Hyp Ref Expression
1 df-f1 F:A1-1BF:ABFunF-1
2 funcnv2 FunF-1y*xxFy
3 2 anbi2i F:ABFunF-1F:ABy*xxFy
4 1 3 bitri F:A1-1BF:ABy*xxFy