Metamath Proof Explorer


Theorem f1eq3

Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1eq3 ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶1-1𝐴𝐹 : 𝐶1-1𝐵 ) )

Proof

Step Hyp Ref Expression
1 feq3 ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶𝐴𝐹 : 𝐶𝐵 ) )
2 1 anbi1d ( 𝐴 = 𝐵 → ( ( 𝐹 : 𝐶𝐴 ∧ Fun 𝐹 ) ↔ ( 𝐹 : 𝐶𝐵 ∧ Fun 𝐹 ) ) )
3 df-f1 ( 𝐹 : 𝐶1-1𝐴 ↔ ( 𝐹 : 𝐶𝐴 ∧ Fun 𝐹 ) )
4 df-f1 ( 𝐹 : 𝐶1-1𝐵 ↔ ( 𝐹 : 𝐶𝐵 ∧ Fun 𝐹 ) )
5 2 3 4 3bitr4g ( 𝐴 = 𝐵 → ( 𝐹 : 𝐶1-1𝐴𝐹 : 𝐶1-1𝐵 ) )