Metamath Proof Explorer


Theorem f1eq3

Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1eq3
|- ( A = B -> ( F : C -1-1-> A <-> F : C -1-1-> B ) )

Proof

Step Hyp Ref Expression
1 feq3
 |-  ( A = B -> ( F : C --> A <-> F : C --> B ) )
2 1 anbi1d
 |-  ( A = B -> ( ( F : C --> A /\ Fun `' F ) <-> ( F : C --> B /\ Fun `' F ) ) )
3 df-f1
 |-  ( F : C -1-1-> A <-> ( F : C --> A /\ Fun `' F ) )
4 df-f1
 |-  ( F : C -1-1-> B <-> ( F : C --> B /\ Fun `' F ) )
5 2 3 4 3bitr4g
 |-  ( A = B -> ( F : C -1-1-> A <-> F : C -1-1-> B ) )