Metamath Proof Explorer


Theorem f1eq1

Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1eq1 F=GF:A1-1BG:A1-1B

Proof

Step Hyp Ref Expression
1 feq1 F=GF:ABG:AB
2 cnveq F=GF-1=G-1
3 2 funeqd F=GFunF-1FunG-1
4 1 3 anbi12d F=GF:ABFunF-1G:ABFunG-1
5 df-f1 F:A1-1BF:ABFunF-1
6 df-f1 G:A1-1BG:ABFunG-1
7 4 5 6 3bitr4g F=GF:A1-1BG:A1-1B