Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
cnveq
Next ⟩
cnveqi
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnveq
Description:
Equality theorem for converse relation.
(Contributed by
NM
, 13-Aug-1995)
Ref
Expression
Assertion
cnveq
⊢
A
=
B
→
A
-1
=
B
-1
Proof
Step
Hyp
Ref
Expression
1
cnvss
⊢
A
⊆
B
→
A
-1
⊆
B
-1
2
cnvss
⊢
B
⊆
A
→
B
-1
⊆
A
-1
3
1
2
anim12i
⊢
A
⊆
B
∧
B
⊆
A
→
A
-1
⊆
B
-1
∧
B
-1
⊆
A
-1
4
eqss
⊢
A
=
B
↔
A
⊆
B
∧
B
⊆
A
5
eqss
⊢
A
-1
=
B
-1
↔
A
-1
⊆
B
-1
∧
B
-1
⊆
A
-1
6
3
4
5
3imtr4i
⊢
A
=
B
→
A
-1
=
B
-1