Metamath Proof Explorer


Theorem eqss

Description: The subclass relationship is antisymmetric. Compare Theorem 4 of Suppes p. 22. (Contributed by NM, 21-May-1993)

Ref Expression
Assertion eqss A = B A B B A

Proof

Step Hyp Ref Expression
1 albiim x x A x B x x A x B x x B x A
2 dfcleq A = B x x A x B
3 dfss2 A B x x A x B
4 dfss2 B A x x B x A
5 3 4 anbi12i A B B A x x A x B x x B x A
6 1 2 5 3bitr4i A = B A B B A