Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | f1eq1 | |- ( F = G -> ( F : A -1-1-> B <-> G : A -1-1-> B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1 | |- ( F = G -> ( F : A --> B <-> G : A --> B ) ) |
|
2 | cnveq | |- ( F = G -> `' F = `' G ) |
|
3 | 2 | funeqd | |- ( F = G -> ( Fun `' F <-> Fun `' G ) ) |
4 | 1 3 | anbi12d | |- ( F = G -> ( ( F : A --> B /\ Fun `' F ) <-> ( G : A --> B /\ Fun `' G ) ) ) |
5 | df-f1 | |- ( F : A -1-1-> B <-> ( F : A --> B /\ Fun `' F ) ) |
|
6 | df-f1 | |- ( G : A -1-1-> B <-> ( G : A --> B /\ Fun `' G ) ) |
|
7 | 4 5 6 | 3bitr4g | |- ( F = G -> ( F : A -1-1-> B <-> G : A -1-1-> B ) ) |