Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | f1eq1 | ⊢ ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ 𝐺 : 𝐴 –1-1→ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1 | ⊢ ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐺 : 𝐴 ⟶ 𝐵 ) ) | |
2 | cnveq | ⊢ ( 𝐹 = 𝐺 → ◡ 𝐹 = ◡ 𝐺 ) | |
3 | 2 | funeqd | ⊢ ( 𝐹 = 𝐺 → ( Fun ◡ 𝐹 ↔ Fun ◡ 𝐺 ) ) |
4 | 1 3 | anbi12d | ⊢ ( 𝐹 = 𝐺 → ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐹 ) ↔ ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐺 ) ) ) |
5 | df-f1 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐹 ) ) | |
6 | df-f1 | ⊢ ( 𝐺 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐺 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐺 ) ) | |
7 | 4 5 6 | 3bitr4g | ⊢ ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ 𝐺 : 𝐴 –1-1→ 𝐵 ) ) |