Metamath Proof Explorer


Theorem f1eq1

Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997)

Ref Expression
Assertion f1eq1 ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴1-1𝐵𝐺 : 𝐴1-1𝐵 ) )

Proof

Step Hyp Ref Expression
1 feq1 ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴𝐵𝐺 : 𝐴𝐵 ) )
2 cnveq ( 𝐹 = 𝐺 𝐹 = 𝐺 )
3 2 funeqd ( 𝐹 = 𝐺 → ( Fun 𝐹 ↔ Fun 𝐺 ) )
4 1 3 anbi12d ( 𝐹 = 𝐺 → ( ( 𝐹 : 𝐴𝐵 ∧ Fun 𝐹 ) ↔ ( 𝐺 : 𝐴𝐵 ∧ Fun 𝐺 ) ) )
5 df-f1 ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ Fun 𝐹 ) )
6 df-f1 ( 𝐺 : 𝐴1-1𝐵 ↔ ( 𝐺 : 𝐴𝐵 ∧ Fun 𝐺 ) )
7 4 5 6 3bitr4g ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴1-1𝐵𝐺 : 𝐴1-1𝐵 ) )