Metamath Proof Explorer


Theorem feq1

Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994)

Ref Expression
Assertion feq1 F=GF:ABG:AB

Proof

Step Hyp Ref Expression
1 fneq1 F=GFFnAGFnA
2 rneq F=GranF=ranG
3 2 sseq1d F=GranFBranGB
4 1 3 anbi12d F=GFFnAranFBGFnAranGB
5 df-f F:ABFFnAranFB
6 df-f G:ABGFnAranGB
7 4 5 6 3bitr4g F=GF:ABG:AB