Metamath Proof Explorer


Theorem rneq

Description: Equality theorem for range. (Contributed by NM, 29-Dec-1996)

Ref Expression
Assertion rneq A=BranA=ranB

Proof

Step Hyp Ref Expression
1 cnveq A=BA-1=B-1
2 1 dmeqd A=BdomA-1=domB-1
3 df-rn ranA=domA-1
4 df-rn ranB=domB-1
5 2 3 4 3eqtr4g A=BranA=ranB