Metamath Proof Explorer


Theorem sseq1d

Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994)

Ref Expression
Hypothesis sseq1d.1 φ A = B
Assertion sseq1d φ A C B C

Proof

Step Hyp Ref Expression
1 sseq1d.1 φ A = B
2 sseq1 A = B A C B C
3 1 2 syl φ A C B C