Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
sseq1d
Next ⟩
sseq2d
Metamath Proof Explorer
Ascii
Unicode
Theorem
sseq1d
Description:
An equality deduction for the subclass relationship.
(Contributed by
NM
, 14-Aug-1994)
Ref
Expression
Hypothesis
sseq1d.1
⊢
φ
→
A
=
B
Assertion
sseq1d
⊢
φ
→
A
⊆
C
↔
B
⊆
C
Proof
Step
Hyp
Ref
Expression
1
sseq1d.1
⊢
φ
→
A
=
B
2
sseq1
⊢
A
=
B
→
A
⊆
C
↔
B
⊆
C
3
1
2
syl
⊢
φ
→
A
⊆
C
↔
B
⊆
C