Metamath Proof Explorer


Theorem sseq1

Description: Equality theorem for subclasses. (Contributed by NM, 24-Jun-1993) (Proof shortened by Andrew Salmon, 21-Jun-2011)

Ref Expression
Assertion sseq1 A = B A C B C

Proof

Step Hyp Ref Expression
1 eqss A = B A B B A
2 sstr2 B A A C B C
3 sstr2 A B B C A C
4 2 3 anbiim B A A B A C B C
5 4 ancoms A B B A A C B C
6 1 5 sylbi A = B A C B C