Metamath Proof Explorer


Theorem sseq1

Description: Equality theorem for subclasses. (Contributed by NM, 24-Jun-1993) (Proof shortened by Andrew Salmon, 21-Jun-2011)

Ref Expression
Assertion sseq1 A=BACBC

Proof

Step Hyp Ref Expression
1 eqss A=BABBA
2 sstr2 BAACBC
3 2 adantl ABBAACBC
4 sstr2 ABBCAC
5 4 adantr ABBABCAC
6 3 5 impbid ABBAACBC
7 1 6 sylbi A=BACBC