Metamath Proof Explorer


Theorem sseq1

Description: Equality theorem for subclasses. (Contributed by NM, 24-Jun-1993) (Proof shortened by Andrew Salmon, 21-Jun-2011)

Ref Expression
Assertion sseq1 A = B A C B C

Proof

Step Hyp Ref Expression
1 eqss A = B A B B A
2 sstr2 B A A C B C
3 2 adantl A B B A A C B C
4 sstr2 A B B C A C
5 4 adantr A B B A B C A C
6 3 5 impbid A B B A A C B C
7 1 6 sylbi A = B A C B C