Metamath Proof Explorer


Theorem sseq2

Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998)

Ref Expression
Assertion sseq2 A = B C A C B

Proof

Step Hyp Ref Expression
1 sstr2 C A A B C B
2 1 com12 A B C A C B
3 sstr2 C B B A C A
4 3 com12 B A C B C A
5 2 4 anim12i A B B A C A C B C B C A
6 eqss A = B A B B A
7 dfbi2 C A C B C A C B C B C A
8 5 6 7 3imtr4i A = B C A C B