Metamath Proof Explorer


Theorem sseq2

Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998)

Ref Expression
Assertion sseq2 ( 𝐴 = 𝐵 → ( 𝐶𝐴𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 sstr2 ( 𝐶𝐴 → ( 𝐴𝐵𝐶𝐵 ) )
2 1 com12 ( 𝐴𝐵 → ( 𝐶𝐴𝐶𝐵 ) )
3 sstr2 ( 𝐶𝐵 → ( 𝐵𝐴𝐶𝐴 ) )
4 3 com12 ( 𝐵𝐴 → ( 𝐶𝐵𝐶𝐴 ) )
5 2 4 anim12i ( ( 𝐴𝐵𝐵𝐴 ) → ( ( 𝐶𝐴𝐶𝐵 ) ∧ ( 𝐶𝐵𝐶𝐴 ) ) )
6 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
7 dfbi2 ( ( 𝐶𝐴𝐶𝐵 ) ↔ ( ( 𝐶𝐴𝐶𝐵 ) ∧ ( 𝐶𝐵𝐶𝐴 ) ) )
8 5 6 7 3imtr4i ( 𝐴 = 𝐵 → ( 𝐶𝐴𝐶𝐵 ) )