Metamath Proof Explorer


Theorem sstr2

Description: Transitivity of subclass relationship. Exercise 5 of TakeutiZaring p. 17. (Contributed by NM, 24-Jun-1993) (Proof shortened by Andrew Salmon, 14-Jun-2011)

Ref Expression
Assertion sstr2 ( 𝐴𝐵 → ( 𝐵𝐶𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
2 1 imim1d ( 𝐴𝐵 → ( ( 𝑥𝐵𝑥𝐶 ) → ( 𝑥𝐴𝑥𝐶 ) ) )
3 2 alimdv ( 𝐴𝐵 → ( ∀ 𝑥 ( 𝑥𝐵𝑥𝐶 ) → ∀ 𝑥 ( 𝑥𝐴𝑥𝐶 ) ) )
4 dfss2 ( 𝐵𝐶 ↔ ∀ 𝑥 ( 𝑥𝐵𝑥𝐶 ) )
5 dfss2 ( 𝐴𝐶 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐶 ) )
6 3 4 5 3imtr4g ( 𝐴𝐵 → ( 𝐵𝐶𝐴𝐶 ) )