Description: Transitivity of subclass relationship. Exercise 5 of TakeutiZaring p. 17. (Contributed by NM, 24-Jun-1993) (Proof shortened by Andrew Salmon, 14-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | sstr2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
2 | 1 | imim1d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) ) |
3 | 2 | alimdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) ) |
4 | dfss2 | ⊢ ( 𝐵 ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) | |
5 | dfss2 | ⊢ ( 𝐴 ⊆ 𝐶 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) | |
6 | 3 4 5 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶 ) ) |