Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | sseq2 | |- ( A = B -> ( C C_ A <-> C C_ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 | |- ( C C_ A -> ( A C_ B -> C C_ B ) ) |
|
2 | 1 | com12 | |- ( A C_ B -> ( C C_ A -> C C_ B ) ) |
3 | sstr2 | |- ( C C_ B -> ( B C_ A -> C C_ A ) ) |
|
4 | 3 | com12 | |- ( B C_ A -> ( C C_ B -> C C_ A ) ) |
5 | 2 4 | anim12i | |- ( ( A C_ B /\ B C_ A ) -> ( ( C C_ A -> C C_ B ) /\ ( C C_ B -> C C_ A ) ) ) |
6 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
7 | dfbi2 | |- ( ( C C_ A <-> C C_ B ) <-> ( ( C C_ A -> C C_ B ) /\ ( C C_ B -> C C_ A ) ) ) |
|
8 | 5 6 7 | 3imtr4i | |- ( A = B -> ( C C_ A <-> C C_ B ) ) |