Metamath Proof Explorer


Theorem sseq1

Description: Equality theorem for subclasses. (Contributed by NM, 24-Jun-1993) (Proof shortened by Andrew Salmon, 21-Jun-2011)

Ref Expression
Assertion sseq1 ( 𝐴 = 𝐵 → ( 𝐴𝐶𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
2 sstr2 ( 𝐵𝐴 → ( 𝐴𝐶𝐵𝐶 ) )
3 2 adantl ( ( 𝐴𝐵𝐵𝐴 ) → ( 𝐴𝐶𝐵𝐶 ) )
4 sstr2 ( 𝐴𝐵 → ( 𝐵𝐶𝐴𝐶 ) )
5 4 adantr ( ( 𝐴𝐵𝐵𝐴 ) → ( 𝐵𝐶𝐴𝐶 ) )
6 3 5 impbid ( ( 𝐴𝐵𝐵𝐴 ) → ( 𝐴𝐶𝐵𝐶 ) )
7 1 6 sylbi ( 𝐴 = 𝐵 → ( 𝐴𝐶𝐵𝐶 ) )