Description: Equality theorem for subclasses. (Contributed by NM, 24-Jun-1993) (Proof shortened by Andrew Salmon, 21-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | sseq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
2 | sstr2 | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶 ) ) | |
3 | 2 | adantl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶 ) ) |
4 | sstr2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶 ) ) | |
5 | 4 | adantr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶 ) ) |
6 | 3 5 | impbid | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) ) |
7 | 1 6 | sylbi | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) ) |