Description: Equality theorem for subclasses. (Contributed by NM, 24-Jun-1993) (Proof shortened by Andrew Salmon, 21-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | sseq1 | |- ( A = B -> ( A C_ C <-> B C_ C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
2 | sstr2 | |- ( B C_ A -> ( A C_ C -> B C_ C ) ) |
|
3 | 2 | adantl | |- ( ( A C_ B /\ B C_ A ) -> ( A C_ C -> B C_ C ) ) |
4 | sstr2 | |- ( A C_ B -> ( B C_ C -> A C_ C ) ) |
|
5 | 4 | adantr | |- ( ( A C_ B /\ B C_ A ) -> ( B C_ C -> A C_ C ) ) |
6 | 3 5 | impbid | |- ( ( A C_ B /\ B C_ A ) -> ( A C_ C <-> B C_ C ) ) |
7 | 1 6 | sylbi | |- ( A = B -> ( A C_ C <-> B C_ C ) ) |