Metamath Proof Explorer
Description: Elimination of an existential quantifier, using implicit substitution.
(Contributed by Thierry Arnoux, 10-Sep-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ceqsexv2d.1 |
|
|
|
ceqsexv2d.2 |
|
|
|
ceqsexv2d.3 |
|
|
Assertion |
ceqsexv2d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ceqsexv2d.1 |
|
2 |
|
ceqsexv2d.2 |
|
3 |
|
ceqsexv2d.3 |
|
4 |
1 2
|
ceqsexv |
|
5 |
4
|
biimpri |
|
6 |
|
exsimpr |
|
7 |
3 5 6
|
mp2b |
|