Metamath Proof Explorer


Theorem ceqsexv2d

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016)

Ref Expression
Hypotheses ceqsexv2d.1 A V
ceqsexv2d.2 x = A φ ψ
ceqsexv2d.3 ψ
Assertion ceqsexv2d x φ

Proof

Step Hyp Ref Expression
1 ceqsexv2d.1 A V
2 ceqsexv2d.2 x = A φ ψ
3 ceqsexv2d.3 ψ
4 1 2 ceqsexv x x = A φ ψ
5 4 biimpri ψ x x = A φ
6 exsimpr x x = A φ x φ
7 3 5 6 mp2b x φ