Metamath Proof Explorer


Theorem ceqsexv2d

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016)

Ref Expression
Hypotheses ceqsexv2d.1
|- A e. _V
ceqsexv2d.2
|- ( x = A -> ( ph <-> ps ) )
ceqsexv2d.3
|- ps
Assertion ceqsexv2d
|- E. x ph

Proof

Step Hyp Ref Expression
1 ceqsexv2d.1
 |-  A e. _V
2 ceqsexv2d.2
 |-  ( x = A -> ( ph <-> ps ) )
3 ceqsexv2d.3
 |-  ps
4 1 2 ceqsexv
 |-  ( E. x ( x = A /\ ph ) <-> ps )
5 4 biimpri
 |-  ( ps -> E. x ( x = A /\ ph ) )
6 exsimpr
 |-  ( E. x ( x = A /\ ph ) -> E. x ph )
7 3 5 6 mp2b
 |-  E. x ph