Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) Avoid ax-12 . (Revised by Gino Giotto, 12-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ceqsexv.1 | |- A e. _V |
|
ceqsexv.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | ceqsexv | |- ( E. x ( x = A /\ ph ) <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsexv.1 | |- A e. _V |
|
2 | ceqsexv.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
3 | 2 | biimpa | |- ( ( x = A /\ ph ) -> ps ) |
4 | 3 | exlimiv | |- ( E. x ( x = A /\ ph ) -> ps ) |
5 | 2 | biimprcd | |- ( ps -> ( x = A -> ph ) ) |
6 | 5 | alrimiv | |- ( ps -> A. x ( x = A -> ph ) ) |
7 | 1 | isseti | |- E. x x = A |
8 | exintr | |- ( A. x ( x = A -> ph ) -> ( E. x x = A -> E. x ( x = A /\ ph ) ) ) |
|
9 | 6 7 8 | mpisyl | |- ( ps -> E. x ( x = A /\ ph ) ) |
10 | 4 9 | impbii | |- ( E. x ( x = A /\ ph ) <-> ps ) |