Metamath Proof Explorer


Theorem ceqsexv

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) Avoid ax-12 . (Revised by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypotheses ceqsexv.1
|- A e. _V
ceqsexv.2
|- ( x = A -> ( ph <-> ps ) )
Assertion ceqsexv
|- ( E. x ( x = A /\ ph ) <-> ps )

Proof

Step Hyp Ref Expression
1 ceqsexv.1
 |-  A e. _V
2 ceqsexv.2
 |-  ( x = A -> ( ph <-> ps ) )
3 2 biimpa
 |-  ( ( x = A /\ ph ) -> ps )
4 3 exlimiv
 |-  ( E. x ( x = A /\ ph ) -> ps )
5 2 biimprcd
 |-  ( ps -> ( x = A -> ph ) )
6 5 alrimiv
 |-  ( ps -> A. x ( x = A -> ph ) )
7 1 isseti
 |-  E. x x = A
8 exintr
 |-  ( A. x ( x = A -> ph ) -> ( E. x x = A -> E. x ( x = A /\ ph ) ) )
9 6 7 8 mpisyl
 |-  ( ps -> E. x ( x = A /\ ph ) )
10 4 9 impbii
 |-  ( E. x ( x = A /\ ph ) <-> ps )