Metamath Proof Explorer


Theorem ceqsexv

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995) Avoid ax-12 . (Revised by Gino Giotto, 12-Oct-2024) (Proof shortened by Wolf Lammen, 22-Jan-2025)

Ref Expression
Hypotheses ceqsexv.1 AV
ceqsexv.2 x=Aφψ
Assertion ceqsexv xx=Aφψ

Proof

Step Hyp Ref Expression
1 ceqsexv.1 AV
2 ceqsexv.2 x=Aφψ
3 alinexa xx=A¬φ¬xx=Aφ
4 2 notbid x=A¬φ¬ψ
5 1 4 ceqsalv xx=A¬φ¬ψ
6 3 5 bitr3i ¬xx=Aφ¬ψ
7 6 con4bii xx=Aφψ