Metamath Proof Explorer


Theorem exintr

Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993) (Proof shortened by BJ, 16-Sep-2022)

Ref Expression
Assertion exintr
|- ( A. x ( ph -> ps ) -> ( E. x ph -> E. x ( ph /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 ancl
 |-  ( ( ph -> ps ) -> ( ph -> ( ph /\ ps ) ) )
2 1 aleximi
 |-  ( A. x ( ph -> ps ) -> ( E. x ph -> E. x ( ph /\ ps ) ) )