Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993) (Proof shortened by BJ, 16-Sep-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | exintr | |- ( A. x ( ph -> ps ) -> ( E. x ph -> E. x ( ph /\ ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancl | |- ( ( ph -> ps ) -> ( ph -> ( ph /\ ps ) ) ) |
|
2 | 1 | aleximi | |- ( A. x ( ph -> ps ) -> ( E. x ph -> E. x ( ph /\ ps ) ) ) |