Metamath Proof Explorer


Theorem mpisyl

Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011)

Ref Expression
Hypotheses mpisyl.1
|- ( ph -> ps )
mpisyl.2
|- ch
mpisyl.3
|- ( ps -> ( ch -> th ) )
Assertion mpisyl
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 mpisyl.1
 |-  ( ph -> ps )
2 mpisyl.2
 |-  ch
3 mpisyl.3
 |-  ( ps -> ( ch -> th ) )
4 2 3 mpi
 |-  ( ps -> th )
5 1 4 syl
 |-  ( ph -> th )