Metamath Proof Explorer


Theorem mpisyl

Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011)

Ref Expression
Hypotheses mpisyl.1 ( 𝜑𝜓 )
mpisyl.2 𝜒
mpisyl.3 ( 𝜓 → ( 𝜒𝜃 ) )
Assertion mpisyl ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 mpisyl.1 ( 𝜑𝜓 )
2 mpisyl.2 𝜒
3 mpisyl.3 ( 𝜓 → ( 𝜒𝜃 ) )
4 2 3 mpi ( 𝜓𝜃 )
5 1 4 syl ( 𝜑𝜃 )