Step |
Hyp |
Ref |
Expression |
1 |
|
ceqsex2.1 |
|- F/ x ps |
2 |
|
ceqsex2.2 |
|- F/ y ch |
3 |
|
ceqsex2.3 |
|- A e. _V |
4 |
|
ceqsex2.4 |
|- B e. _V |
5 |
|
ceqsex2.5 |
|- ( x = A -> ( ph <-> ps ) ) |
6 |
|
ceqsex2.6 |
|- ( y = B -> ( ps <-> ch ) ) |
7 |
|
3anass |
|- ( ( x = A /\ y = B /\ ph ) <-> ( x = A /\ ( y = B /\ ph ) ) ) |
8 |
7
|
exbii |
|- ( E. y ( x = A /\ y = B /\ ph ) <-> E. y ( x = A /\ ( y = B /\ ph ) ) ) |
9 |
|
19.42v |
|- ( E. y ( x = A /\ ( y = B /\ ph ) ) <-> ( x = A /\ E. y ( y = B /\ ph ) ) ) |
10 |
8 9
|
bitri |
|- ( E. y ( x = A /\ y = B /\ ph ) <-> ( x = A /\ E. y ( y = B /\ ph ) ) ) |
11 |
10
|
exbii |
|- ( E. x E. y ( x = A /\ y = B /\ ph ) <-> E. x ( x = A /\ E. y ( y = B /\ ph ) ) ) |
12 |
|
nfv |
|- F/ x y = B |
13 |
12 1
|
nfan |
|- F/ x ( y = B /\ ps ) |
14 |
13
|
nfex |
|- F/ x E. y ( y = B /\ ps ) |
15 |
5
|
anbi2d |
|- ( x = A -> ( ( y = B /\ ph ) <-> ( y = B /\ ps ) ) ) |
16 |
15
|
exbidv |
|- ( x = A -> ( E. y ( y = B /\ ph ) <-> E. y ( y = B /\ ps ) ) ) |
17 |
14 3 16
|
ceqsex |
|- ( E. x ( x = A /\ E. y ( y = B /\ ph ) ) <-> E. y ( y = B /\ ps ) ) |
18 |
2 4 6
|
ceqsex |
|- ( E. y ( y = B /\ ps ) <-> ch ) |
19 |
11 17 18
|
3bitri |
|- ( E. x E. y ( x = A /\ y = B /\ ph ) <-> ch ) |