Metamath Proof Explorer


Theorem 3anass

Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994)

Ref Expression
Assertion 3anass
|- ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 df-3an
 |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) )
2 anass
 |-  ( ( ( ph /\ ps ) /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )
3 1 2 bitri
 |-  ( ( ph /\ ps /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )