Metamath Proof Explorer


Theorem 3anass

Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994)

Ref Expression
Assertion 3anass ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 df-3an ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
2 anass ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
3 1 2 bitri ( ( 𝜑𝜓𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )