Step |
Hyp |
Ref |
Expression |
1 |
|
ceqsex2v.1 |
|- A e. _V |
2 |
|
ceqsex2v.2 |
|- B e. _V |
3 |
|
ceqsex2v.3 |
|- ( x = A -> ( ph <-> ps ) ) |
4 |
|
ceqsex2v.4 |
|- ( y = B -> ( ps <-> ch ) ) |
5 |
|
3anass |
|- ( ( x = A /\ y = B /\ ph ) <-> ( x = A /\ ( y = B /\ ph ) ) ) |
6 |
5
|
exbii |
|- ( E. y ( x = A /\ y = B /\ ph ) <-> E. y ( x = A /\ ( y = B /\ ph ) ) ) |
7 |
|
19.42v |
|- ( E. y ( x = A /\ ( y = B /\ ph ) ) <-> ( x = A /\ E. y ( y = B /\ ph ) ) ) |
8 |
6 7
|
bitri |
|- ( E. y ( x = A /\ y = B /\ ph ) <-> ( x = A /\ E. y ( y = B /\ ph ) ) ) |
9 |
8
|
exbii |
|- ( E. x E. y ( x = A /\ y = B /\ ph ) <-> E. x ( x = A /\ E. y ( y = B /\ ph ) ) ) |
10 |
3
|
anbi2d |
|- ( x = A -> ( ( y = B /\ ph ) <-> ( y = B /\ ps ) ) ) |
11 |
10
|
exbidv |
|- ( x = A -> ( E. y ( y = B /\ ph ) <-> E. y ( y = B /\ ps ) ) ) |
12 |
1 11
|
ceqsexv |
|- ( E. x ( x = A /\ E. y ( y = B /\ ph ) ) <-> E. y ( y = B /\ ps ) ) |
13 |
2 4
|
ceqsexv |
|- ( E. y ( y = B /\ ps ) <-> ch ) |
14 |
9 12 13
|
3bitri |
|- ( E. x E. y ( x = A /\ y = B /\ ph ) <-> ch ) |