Metamath Proof Explorer


Theorem ceqsex2v

Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023)

Ref Expression
Hypotheses ceqsex2v.1 𝐴 ∈ V
ceqsex2v.2 𝐵 ∈ V
ceqsex2v.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
ceqsex2v.4 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
Assertion ceqsex2v ( ∃ 𝑥𝑦 ( 𝑥 = 𝐴𝑦 = 𝐵𝜑 ) ↔ 𝜒 )

Proof

Step Hyp Ref Expression
1 ceqsex2v.1 𝐴 ∈ V
2 ceqsex2v.2 𝐵 ∈ V
3 ceqsex2v.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 ceqsex2v.4 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
5 3anass ( ( 𝑥 = 𝐴𝑦 = 𝐵𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵𝜑 ) ) )
6 5 exbii ( ∃ 𝑦 ( 𝑥 = 𝐴𝑦 = 𝐵𝜑 ) ↔ ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵𝜑 ) ) )
7 19.42v ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵𝜑 ) ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵𝜑 ) ) )
8 6 7 bitri ( ∃ 𝑦 ( 𝑥 = 𝐴𝑦 = 𝐵𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵𝜑 ) ) )
9 8 exbii ( ∃ 𝑥𝑦 ( 𝑥 = 𝐴𝑦 = 𝐵𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵𝜑 ) ) )
10 3 anbi2d ( 𝑥 = 𝐴 → ( ( 𝑦 = 𝐵𝜑 ) ↔ ( 𝑦 = 𝐵𝜓 ) ) )
11 10 exbidv ( 𝑥 = 𝐴 → ( ∃ 𝑦 ( 𝑦 = 𝐵𝜑 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵𝜓 ) ) )
12 1 11 ceqsexv ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵𝜑 ) ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵𝜓 ) )
13 2 4 ceqsexv ( ∃ 𝑦 ( 𝑦 = 𝐵𝜓 ) ↔ 𝜒 )
14 9 12 13 3bitri ( ∃ 𝑥𝑦 ( 𝑥 = 𝐴𝑦 = 𝐵𝜑 ) ↔ 𝜒 )