Metamath Proof Explorer


Theorem 19.42v

Description: Version of 19.42 with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Jun-1993)

Ref Expression
Assertion 19.42v ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.41v ( ∃ 𝑥 ( 𝜓𝜑 ) ↔ ( ∃ 𝑥 𝜓𝜑 ) )
2 exancom ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝜓𝜑 ) )
3 ancom ( ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ↔ ( ∃ 𝑥 𝜓𝜑 ) )
4 1 2 3 3bitr4i ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥 𝜓 ) )