Metamath Proof Explorer


Theorem ceqsexv2d

Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016)

Ref Expression
Hypotheses ceqsexv2d.1 𝐴 ∈ V
ceqsexv2d.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
ceqsexv2d.3 𝜓
Assertion ceqsexv2d 𝑥 𝜑

Proof

Step Hyp Ref Expression
1 ceqsexv2d.1 𝐴 ∈ V
2 ceqsexv2d.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 ceqsexv2d.3 𝜓
4 1 2 ceqsexv ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 )
5 4 biimpri ( 𝜓 → ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) )
6 exsimpr ( ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) → ∃ 𝑥 𝜑 )
7 3 5 6 mp2b 𝑥 𝜑