Metamath Proof Explorer
Description: Elimination of an existential quantifier, using implicit substitution.
(Contributed by Thierry Arnoux, 10-Sep-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ceqsexv2d.1 |
⊢ 𝐴 ∈ V |
|
|
ceqsexv2d.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
ceqsexv2d.3 |
⊢ 𝜓 |
|
Assertion |
ceqsexv2d |
⊢ ∃ 𝑥 𝜑 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ceqsexv2d.1 |
⊢ 𝐴 ∈ V |
2 |
|
ceqsexv2d.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
ceqsexv2d.3 |
⊢ 𝜓 |
4 |
1 2
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) |
5 |
4
|
biimpri |
⊢ ( 𝜓 → ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
6 |
|
exsimpr |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) → ∃ 𝑥 𝜑 ) |
7 |
3 5 6
|
mp2b |
⊢ ∃ 𝑥 𝜑 |