Metamath Proof Explorer


Theorem 0dvds

Description: Only 0 is divisible by 0. Theorem 1.1(h) in ApostolNT p. 14. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion 0dvds N0NN=0

Proof

Step Hyp Ref Expression
1 0z 0
2 divides 0N0Nnn0=N
3 1 2 mpan N0Nnn0=N
4 zcn nn
5 4 mul01d nn0=0
6 eqtr2 n0=Nn0=0N=0
7 5 6 sylan2 n0=NnN=0
8 7 ancoms nn0=NN=0
9 8 rexlimiva nn0=NN=0
10 3 9 syl6bi N0NN=0
11 dvds0 000
12 1 11 ax-mp 00
13 breq2 N=00N00
14 12 13 mpbiri N=00N
15 10 14 impbid1 N0NN=0