Metamath Proof Explorer


Definition df-mul

Description: Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-mul ×=xyz|xywvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmul class×
1 vx setvarx
2 vy setvary
3 vz setvarz
4 1 cv setvarx
5 cc class
6 4 5 wcel wffx
7 2 cv setvary
8 7 5 wcel wffy
9 6 8 wa wffxy
10 vw setvarw
11 vv setvarv
12 vu setvaru
13 vf setvarf
14 10 cv setvarw
15 11 cv setvarv
16 14 15 cop classwv
17 4 16 wceq wffx=wv
18 12 cv setvaru
19 13 cv setvarf
20 18 19 cop classuf
21 7 20 wceq wffy=uf
22 17 21 wa wffx=wvy=uf
23 3 cv setvarz
24 cmr class𝑹
25 14 18 24 co classw𝑹u
26 cplr class+𝑹
27 cm1r class-1𝑹
28 15 19 24 co classv𝑹f
29 27 28 24 co class-1𝑹𝑹v𝑹f
30 25 29 26 co classw𝑹u+𝑹-1𝑹𝑹v𝑹f
31 15 18 24 co classv𝑹u
32 14 19 24 co classw𝑹f
33 31 32 26 co classv𝑹u+𝑹w𝑹f
34 30 33 cop classw𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
35 23 34 wceq wffz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
36 22 35 wa wffx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
37 36 13 wex wfffx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
38 37 12 wex wffufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
39 38 11 wex wffvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
40 39 10 wex wffwvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
41 9 40 wa wffxywvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
42 41 1 2 3 coprab classxyz|xywvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f
43 0 42 wceq wff×=xyz|xywvufx=wvy=ufz=w𝑹u+𝑹-1𝑹𝑹v𝑹fv𝑹u+𝑹w𝑹f