Metamath Proof Explorer


Definition df-mul

Description: Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-mul × = x y z | x y w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmul class ×
1 vx setvar x
2 vy setvar y
3 vz setvar z
4 1 cv setvar x
5 cc class
6 4 5 wcel wff x
7 2 cv setvar y
8 7 5 wcel wff y
9 6 8 wa wff x y
10 vw setvar w
11 vv setvar v
12 vu setvar u
13 vf setvar f
14 10 cv setvar w
15 11 cv setvar v
16 14 15 cop class w v
17 4 16 wceq wff x = w v
18 12 cv setvar u
19 13 cv setvar f
20 18 19 cop class u f
21 7 20 wceq wff y = u f
22 17 21 wa wff x = w v y = u f
23 3 cv setvar z
24 cmr class 𝑹
25 14 18 24 co class w 𝑹 u
26 cplr class + 𝑹
27 cm1r class -1 𝑹
28 15 19 24 co class v 𝑹 f
29 27 28 24 co class -1 𝑹 𝑹 v 𝑹 f
30 25 29 26 co class w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f
31 15 18 24 co class v 𝑹 u
32 14 19 24 co class w 𝑹 f
33 31 32 26 co class v 𝑹 u + 𝑹 w 𝑹 f
34 30 33 cop class w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
35 23 34 wceq wff z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
36 22 35 wa wff x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
37 36 13 wex wff f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
38 37 12 wex wff u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
39 38 11 wex wff v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
40 39 10 wex wff w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
41 9 40 wa wff x y w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
42 41 1 2 3 coprab class x y z | x y w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
43 0 42 wceq wff × = x y z | x y w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f