Metamath Proof Explorer


Definition df-plr

Description: Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 25-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-plr +𝑹=xyz|x𝑹y𝑹wvufx=wv~𝑹y=uf~𝑹z=w+𝑷uv+𝑷f~𝑹

Detailed syntax breakdown

Step Hyp Ref Expression
0 cplr class+𝑹
1 vx setvarx
2 vy setvary
3 vz setvarz
4 1 cv setvarx
5 cnr class𝑹
6 4 5 wcel wffx𝑹
7 2 cv setvary
8 7 5 wcel wffy𝑹
9 6 8 wa wffx𝑹y𝑹
10 vw setvarw
11 vv setvarv
12 vu setvaru
13 vf setvarf
14 10 cv setvarw
15 11 cv setvarv
16 14 15 cop classwv
17 cer class~𝑹
18 16 17 cec classwv~𝑹
19 4 18 wceq wffx=wv~𝑹
20 12 cv setvaru
21 13 cv setvarf
22 20 21 cop classuf
23 22 17 cec classuf~𝑹
24 7 23 wceq wffy=uf~𝑹
25 19 24 wa wffx=wv~𝑹y=uf~𝑹
26 3 cv setvarz
27 cpp class+𝑷
28 14 20 27 co classw+𝑷u
29 15 21 27 co classv+𝑷f
30 28 29 cop classw+𝑷uv+𝑷f
31 30 17 cec classw+𝑷uv+𝑷f~𝑹
32 26 31 wceq wffz=w+𝑷uv+𝑷f~𝑹
33 25 32 wa wffx=wv~𝑹y=uf~𝑹z=w+𝑷uv+𝑷f~𝑹
34 33 13 wex wfffx=wv~𝑹y=uf~𝑹z=w+𝑷uv+𝑷f~𝑹
35 34 12 wex wffufx=wv~𝑹y=uf~𝑹z=w+𝑷uv+𝑷f~𝑹
36 35 11 wex wffvufx=wv~𝑹y=uf~𝑹z=w+𝑷uv+𝑷f~𝑹
37 36 10 wex wffwvufx=wv~𝑹y=uf~𝑹z=w+𝑷uv+𝑷f~𝑹
38 9 37 wa wffx𝑹y𝑹wvufx=wv~𝑹y=uf~𝑹z=w+𝑷uv+𝑷f~𝑹
39 38 1 2 3 coprab classxyz|x𝑹y𝑹wvufx=wv~𝑹y=uf~𝑹z=w+𝑷uv+𝑷f~𝑹
40 0 39 wceq wff+𝑹=xyz|x𝑹y𝑹wvufx=wv~𝑹y=uf~𝑹z=w+𝑷uv+𝑷f~𝑹