Metamath Proof Explorer


Definition df-mr

Description: Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-4.3 of Gleason p. 126. (Contributed by NM, 25-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-mr 𝑹=xyz|x𝑹y𝑹wvufx=wv~𝑹y=uf~𝑹z=w𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u~𝑹

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmr class𝑹
1 vx setvarx
2 vy setvary
3 vz setvarz
4 1 cv setvarx
5 cnr class𝑹
6 4 5 wcel wffx𝑹
7 2 cv setvary
8 7 5 wcel wffy𝑹
9 6 8 wa wffx𝑹y𝑹
10 vw setvarw
11 vv setvarv
12 vu setvaru
13 vf setvarf
14 10 cv setvarw
15 11 cv setvarv
16 14 15 cop classwv
17 cer class~𝑹
18 16 17 cec classwv~𝑹
19 4 18 wceq wffx=wv~𝑹
20 12 cv setvaru
21 13 cv setvarf
22 20 21 cop classuf
23 22 17 cec classuf~𝑹
24 7 23 wceq wffy=uf~𝑹
25 19 24 wa wffx=wv~𝑹y=uf~𝑹
26 3 cv setvarz
27 cmp class𝑷
28 14 20 27 co classw𝑷u
29 cpp class+𝑷
30 15 21 27 co classv𝑷f
31 28 30 29 co classw𝑷u+𝑷v𝑷f
32 14 21 27 co classw𝑷f
33 15 20 27 co classv𝑷u
34 32 33 29 co classw𝑷f+𝑷v𝑷u
35 31 34 cop classw𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u
36 35 17 cec classw𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u~𝑹
37 26 36 wceq wffz=w𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u~𝑹
38 25 37 wa wffx=wv~𝑹y=uf~𝑹z=w𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u~𝑹
39 38 13 wex wfffx=wv~𝑹y=uf~𝑹z=w𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u~𝑹
40 39 12 wex wffufx=wv~𝑹y=uf~𝑹z=w𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u~𝑹
41 40 11 wex wffvufx=wv~𝑹y=uf~𝑹z=w𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u~𝑹
42 41 10 wex wffwvufx=wv~𝑹y=uf~𝑹z=w𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u~𝑹
43 9 42 wa wffx𝑹y𝑹wvufx=wv~𝑹y=uf~𝑹z=w𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u~𝑹
44 43 1 2 3 coprab classxyz|x𝑹y𝑹wvufx=wv~𝑹y=uf~𝑹z=w𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u~𝑹
45 0 44 wceq wff𝑹=xyz|x𝑹y𝑹wvufx=wv~𝑹y=uf~𝑹z=w𝑷u+𝑷v𝑷fw𝑷f+𝑷v𝑷u~𝑹