Metamath Proof Explorer


Definition df-mp

Description: Define multiplication on positive reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-3.7 of Gleason p. 124. (Contributed by NM, 18-Nov-1995) (New usage is discouraged.)

Ref Expression
Assertion df-mp 𝑷=x𝑷,y𝑷w|vxuyw=v𝑸u

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmp class𝑷
1 vx setvarx
2 cnp class𝑷
3 vy setvary
4 vw setvarw
5 vv setvarv
6 1 cv setvarx
7 vu setvaru
8 3 cv setvary
9 4 cv setvarw
10 5 cv setvarv
11 cmq class𝑸
12 7 cv setvaru
13 10 12 11 co classv𝑸u
14 9 13 wceq wffw=v𝑸u
15 14 7 8 wrex wffuyw=v𝑸u
16 15 5 6 wrex wffvxuyw=v𝑸u
17 16 4 cab classw|vxuyw=v𝑸u
18 1 3 2 2 17 cmpo classx𝑷,y𝑷w|vxuyw=v𝑸u
19 0 18 wceq wff𝑷=x𝑷,y𝑷w|vxuyw=v𝑸u