Metamath Proof Explorer
Table of Contents - 5.2. Derive the basic properties from the field axioms
- Some deductions from the field axioms for complex numbers
- cnex
- addcl
- readdcl
- mulcl
- remulcl
- mulcom
- addass
- mulass
- adddi
- recn
- reex
- reelprrecn
- cnelprrecn
- elimne0
- adddir
- 0cn
- 0cnd
- c0ex
- 1cnd
- 1ex
- cnre
- mulid1
- mulid2
- 1re
- 1red
- 0re
- 0red
- mulid1i
- mulid2i
- addcli
- mulcli
- mulcomi
- mulcomli
- addassi
- mulassi
- adddii
- adddiri
- recni
- readdcli
- remulcli
- mulid1d
- mulid2d
- addcld
- mulcld
- mulcomd
- addassd
- mulassd
- adddid
- adddird
- adddirp1d
- joinlmuladdmuld
- recnd
- readdcld
- remulcld
- Infinity and the extended real number system
- cpnf
- cmnf
- cxr
- clt
- cle
- df-pnf
- df-mnf
- df-xr
- df-ltxr
- df-le
- pnfnre
- pnfnre2
- mnfnre
- ressxr
- rexpssxrxp
- rexr
- 0xr
- renepnf
- renemnf
- rexrd
- renepnfd
- renemnfd
- pnfex
- pnfxr
- pnfnemnf
- mnfnepnf
- mnfxr
- rexri
- 1xr
- renfdisj
- ltrelxr
- ltrel
- lerelxr
- lerel
- xrlenlt
- xrlenltd
- xrltnle
- xrnltled
- ssxr
- ltxrlt
- Restate the ordering postulates with extended real "less than"
- axlttri
- axlttrn
- axltadd
- axmulgt0
- axsup
- Ordering on reals
- lttr
- mulgt0
- lenlt
- ltnle
- ltso
- gtso
- lttri2
- lttri3
- lttri4
- letri3
- leloe
- eqlelt
- ltle
- leltne
- lelttr
- ltletr
- ltleletr
- letr
- ltnr
- leid
- ltne
- ltnsym
- ltnsym2
- letric
- ltlen
- eqle
- eqled
- ltadd2
- ne0gt0
- lecasei
- lelttric
- ltlecasei
- ltnri
- eqlei
- eqlei2
- gtneii
- ltneii
- lttri2i
- lttri3i
- letri3i
- leloei
- ltleni
- ltnsymi
- lenlti
- ltnlei
- ltlei
- ltleii
- ltnei
- letrii
- lttri
- lelttri
- ltletri
- letri
- le2tri3i
- ltadd2i
- mulgt0i
- mulgt0ii
- ltnrd
- gtned
- ltned
- ne0gt0d
- lttrid
- lttri2d
- lttri3d
- lttri4d
- letri3d
- leloed
- eqleltd
- ltlend
- lenltd
- ltnled
- ltled
- ltnsymd
- nltled
- lensymd
- letrid
- leltned
- leneltd
- mulgt0d
- ltadd2d
- letrd
- lelttrd
- ltadd2dd
- ltletrd
- lttrd
- lelttrdi
- dedekind
- dedekindle
- Initial properties of the complex numbers
- mul12
- mul32
- mul31
- mul4
- mul4r
- muladd11
- 1p1times
- peano2cn
- peano2re
- readdcan
- 00id
- mul02lem1
- mul02lem2
- mul02
- mul01
- addid1
- cnegex
- cnegex2
- addid2
- addcan
- addcan2
- addcom
- addid1i
- addid2i
- mul02i
- mul01i
- addcomi
- addcomli
- addcani
- addcan2i
- mul12i
- mul32i
- mul4i
- mul02d
- mul01d
- addid1d
- addid2d
- addcomd
- addcand
- addcan2d
- addcanad
- addcan2ad
- addneintrd
- addneintr2d
- mul12d
- mul32d
- mul31d
- mul4d
- muladd11r
- comraddd
- ltaddneg
- ltaddnegr