Metamath Proof Explorer


Theorem addcomsr

Description: Addition of signed reals is commutative. (Contributed by NM, 31-Aug-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)

Ref Expression
Assertion addcomsr A+𝑹B=B+𝑹A

Proof

Step Hyp Ref Expression
1 df-nr 𝑹=𝑷×𝑷/~𝑹
2 addsrpr x𝑷y𝑷z𝑷w𝑷xy~𝑹+𝑹zw~𝑹=x+𝑷zy+𝑷w~𝑹
3 addsrpr z𝑷w𝑷x𝑷y𝑷zw~𝑹+𝑹xy~𝑹=z+𝑷xw+𝑷y~𝑹
4 addcompr x+𝑷z=z+𝑷x
5 addcompr y+𝑷w=w+𝑷y
6 1 2 3 4 5 ecovcom A𝑹B𝑹A+𝑹B=B+𝑹A
7 dmaddsr dom+𝑹=𝑹×𝑹
8 7 ndmovcom ¬A𝑹B𝑹A+𝑹B=B+𝑹A
9 6 8 pm2.61i A+𝑹B=B+𝑹A