Metamath Proof Explorer


Theorem ndmovcom

Description: Any operation is commutative outside its domain. (Contributed by NM, 24-Aug-1995)

Ref Expression
Hypothesis ndmov.1 domF=S×S
Assertion ndmovcom ¬ASBSAFB=BFA

Proof

Step Hyp Ref Expression
1 ndmov.1 domF=S×S
2 1 ndmov ¬ASBSAFB=
3 ancom ASBSBSAS
4 1 ndmov ¬BSASBFA=
5 3 4 sylnbi ¬ASBSBFA=
6 2 5 eqtr4d ¬ASBSAFB=BFA