Description: Any operation is commutative outside its domain. (Contributed by NM, 24-Aug-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ndmov.1 | ⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) | |
Assertion | ndmovcom | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) = ( 𝐵 𝐹 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmov.1 | ⊢ dom 𝐹 = ( 𝑆 × 𝑆 ) | |
2 | 1 | ndmov | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) = ∅ ) |
3 | ancom | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ↔ ( 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) ) | |
4 | 1 | ndmov | ⊢ ( ¬ ( 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝐵 𝐹 𝐴 ) = ∅ ) |
5 | 3 4 | sylnbi | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐵 𝐹 𝐴 ) = ∅ ) |
6 | 2 5 | eqtr4d | ⊢ ( ¬ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) → ( 𝐴 𝐹 𝐵 ) = ( 𝐵 𝐹 𝐴 ) ) |