Metamath Proof Explorer


Theorem eqtr4d

Description: An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995)

Ref Expression
Hypotheses eqtr4d.1 ( 𝜑𝐴 = 𝐵 )
eqtr4d.2 ( 𝜑𝐶 = 𝐵 )
Assertion eqtr4d ( 𝜑𝐴 = 𝐶 )

Proof

Step Hyp Ref Expression
1 eqtr4d.1 ( 𝜑𝐴 = 𝐵 )
2 eqtr4d.2 ( 𝜑𝐶 = 𝐵 )
3 2 eqcomd ( 𝜑𝐵 = 𝐶 )
4 1 3 eqtrd ( 𝜑𝐴 = 𝐶 )