Metamath Proof Explorer


Theorem dmaddsr

Description: Domain of addition on signed reals. (Contributed by NM, 25-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion dmaddsr dom+𝑹=𝑹×𝑹

Proof

Step Hyp Ref Expression
1 df-plr +𝑹=xyz|x𝑹y𝑹wvufx=wv~𝑹y=uf~𝑹z=w+𝑷uv+𝑷f~𝑹
2 1 dmeqi dom+𝑹=domxyz|x𝑹y𝑹wvufx=wv~𝑹y=uf~𝑹z=w+𝑷uv+𝑷f~𝑹
3 dmoprabss domxyz|x𝑹y𝑹wvufx=wv~𝑹y=uf~𝑹z=w+𝑷uv+𝑷f~𝑹𝑹×𝑹
4 2 3 eqsstri dom+𝑹𝑹×𝑹
5 0nsr ¬𝑹
6 addclsr x𝑹y𝑹x+𝑹y𝑹
7 5 6 oprssdm 𝑹×𝑹dom+𝑹
8 4 7 eqssi dom+𝑹=𝑹×𝑹